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Abstract

Lewbel (1997) has ingeniously shown that linear instrumental variables estimators for

the errors-in-variables model can be constructed using functions of the dependent variable,

proxy, and perfectly measured regressors as instruments. He proves consistency for the

estimator and then asserts that \standard limiting distribution theory for TSLS can now

be applied." In this note I assume that \standard theory" is given by White (1982), the

source of the standard errors used by Professor Lewbel in his empirical application. I show

that when White's formulas are applied to Lewbel's instruments, they give an ine±cient

estimator, an incorrect asymptotic covariance matrix, and an inconsistent covariance matrix

estimator. These results stem from a subtle violation of the familiar instrumental variable

orthogonality condition. Speci¯cally, only one of Lewbel's instruments can be measured from

an arbitrary origin and satisfy the orthogonality condition; the remaining instruments satisfy

orthogonality only if measured as deviations from their population means. The substitution

of sample means therefore generates a nonstandard asymptotic covariance matrix of the type

described by Newey and McFadden (1994) in their discussion of \plug-in" estimators. I apply

the theory for such estimators to Lewbel's instruments to obtain an e±cient estimator, the

correct asymptotic covariance matrix, and a consistent covariance matrix estimator.



I. Introduction

Lewbel (1997) has ingeniously shown that linear instrumental variables estimators for the

errors-in-variables model can be constructed using functions of the dependent variable, proxy,

and perfectly measured regressors as instruments. He proves consistency for the estimator

and then asserts that \standard limiting distribution theory for TSLS can now be applied."

In this note I assume that \standard theory" is given by White (1982), the source of the

standard errors used by Lewbel in his empirical application. I show that when White's

formulas are applied to Lewbel's instruments, they give an ine±cient estimator, an incorrect

asymptotic covariance matrix, and an inconsistent covariance matrix estimator. These results

stem from a subtle violation of the familiar instrumental variable orthogonality condition.

Speci¯cally, under i.i.d. sampling only one of Lewbel's instruments can be measured from an

arbitrary origin and satisfy the orthogonality condition; the remaining instruments satisfy

orthogonality only if measured as deviations from their population means. The substitution

of sample means therefore generates a nonstandard asymptotic covariance matrix of the

type described by Newey and McFadden (1994), who show that the covariance matrix of

a feasible estimator di®ers from that of its infeasible counterpart whenever the consistency

of the feasible estimator requires consistency of the nuisance parameter estimates. I apply

the theory of these authors to Lewbel's instruments to obtain an an e±cient estimator, the

correct asymptotic covariance matrix, and a consistent covariance matrix estimator.

II. The Lewbel estimator and its asymptotic distribution

Lewbel considers the model

Yi = a+ b
0
Wi + cXi + ei (1)

Zi = d+Xi + vi; (2)

where only (Wi; Yi; Zi) are observable, c 6= 0, and all variables are scalar except for the J £1
vectors Wi and b. Equations (1)-(2) imply

Yi = ®+ b
0
Wi + cZi + "i; (3)
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where ® = a¡ cd and
"i = ei ¡ cvi; (4)

the last equality combining with (2) to generate the correlated error and regressor problem

associated with classical measurement error. Lewbel shows that it is possible to use nonlinear

transformations of the observed variables as instruments. Speci¯cally, if Gi = G(Wi) is

a nonlinear function of Wi, and ¹G; ¹Z, and ¹Y denote sample means, then under certain

conditions

q1i = Gi ¡ ¹G

q2i = (Gi ¡ ¹G)(Zi ¡ ¹Z)

q3i = (Gi ¡ ¹G)(Yi ¡ ¹Y )

are instrumental variables that yield consistent Two Stage Least Squares (TSLS) estimates

of ®, b, and c. Lewbel notes that these new instruments can be combined with the long-

recognized instruments

q4i = (Yi ¡ ¹Y )(Zi ¡ ¹Z)

q5i = (Zi ¡ ¹Z)2

q6i = (Yi ¡ ¹Y )2;

the last two being applicable if E (e3i ) = E (v
3
i ) = 0.

To state the asymptotic distribution for the TSLS estimators, let

µ =

0@ ®
b
c

1A Ri =

0@ 1
Wi

Zi

1A Qi(m) =

0@ 1
Wi

qi(m)

1A ; (5)

where qi(m) is a column vector containing one or more of the following functions of m =

(mG;mZ ;mY )
0:

Gi ¡mG (6)

(Gi ¡mG)(Zi ¡mZ) (7)

(Gi ¡mG)(Yi ¡mY ) (8)
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(Yi ¡mY )(Zi ¡mZ) (9)

(Zi ¡mZ)
2 (10)

(Yi ¡mY )
2: (11)

In this notation (3) is

Yi = R
0
iµ + "i; (12)

and TSLS estimators can be written as

µ̂ =
³
¹M
0
An ¹M

´¡1
¹M
0
An

Ã
1

n

nX
i=1

Q̂iYi

!
; (13)

where An is any appropriately-dimensioned positive de¯nite matrix, ¹M ´ (1=n)Pn
i=1 Q̂iR

0
i,

Q̂i ´ Qi(¹̂), and ¹̂ ´
¡
¹G; ¹Z; ¹Y

¢0
.

Assumption 1: (i) (Wi;Xi; ei; vi) is i:i:d: for i = 1; : : : ; n, the errors ei and vi are inde-

pendent of each other and of (Wi;Xi) and satisfy E (ei) = E (vi) = E (e3i ) = E (v3i ) = 0,

and (Gi;Wi;Xi; ei; vi) has ¯nite moments of every order; (ii) An converges in probability to

a positive de¯nite matrix A.

Note that part (i) satis¯es the weaker assumptions given by Lewbel. Let Ãi(m) ´
((Gi ¡mG); (Zi ¡mZ); (Yi ¡mY ))

0, ¹ ´ (E(Gi); E(Zi); E(Yi))
0
, Ãi ´ Ãi(¹), Qi ´ Qi(¹),

M ´ E £QiR0
i

¤
, and

D = E

Ã
@Qi(m)"i
@m

¯̄̄̄
m=¹

!
: (14)

Proposition 1 If Assumption 1 holds, then
p
n
³
µ̂ ¡ µ

´
d¡!

N
¡
0; (M

0
AM)¡1M

0
A­AM(M

0
AM)¡1

¢
, where ­ = var [Qi"i +DÃi].

1

The proof is in the appendix, where one can see that ­ is the covariance matrix of the

limiting distribution for (1=
p
n)
Pn

i=1 Q̂i"i. The above result is therefore \nonstandard" in

1The object Ãi is called the in°uence function for ¹̂, because it gives the in°uence of
the i-th observation on ¹̂ up to an op(1) remainder term. Newey and McFadden (1994)
discuss in°uence functions and their use in deriving the asymptotic distributions of \plug-
in" estimators.
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the sense that constructing the instruments as deviations from ¹̂ rather than ¹ has generated

the term DÃi appearing in ­. Note that D is generally nonzero if any of (7) through (11)

are included in Qi(m). For example, if (7) is included, then (14) includes the element

E

"Ã
@(Gi ¡mG)(Zi ¡mZ)

@mG

¯̄̄̄
m=¹

!
"i

#
= E [¡ (Zi ¡ E(Zi)) "i]

= E [¡ (Xi ¡ E(Xi) + vi) (ei ¡ cvi)]

= cE
¡
v2i
¢
;

where the second equality is obtained by substituting from (2) and (4), and the last equality

follows from the assumed independence of ei, vi, and (Wi; Xi). The reason D is nonzero is

that the instrumental variable orthogonality conditions associated with (7) through (11) are

satis¯ed if and only if m = ¹. To see this for the above example, note that

E [(Gi ¡mG)(Zi ¡ E(Zi))"i] can be rewritten as ¡cE(Gi¡mG)E(v
2
i ), which vanishes if and

only if mG = E(Gi). In contrast, (6) does not generate nonzero elements in D because the

orthogonality condition E [(Gi ¡mG)"i] = 0 holds for all mG. This situation exempli¯es

Newey and McFadden's comment that the covariance matrix of a feasible estimator requires

adjustment whenever consistency of the feasible estimator depends on consistency of the

\plugged-in" estimate.

Users of standard theory will estimate ­ withWhite's formula ­̂STD = (1=n)
Pn

i=1 "̂
2
i Q̂iQ̂

0
i,

where "̂i ´ Yi ¡R0
iµ̂. The following result shows that ­̂STD is not consistent for ­:

Proposition 2 If Assumption 1 holds, then ­̂STD
p¡! var [Qi"i] :

Using ­̂STD to estimate ­ therefore produces asymptotically invalid inferences. Also, since

an e±cient estimator of µ is obtained by choosing An to be a consistent estimator of ­
¡1

(see Newey (1994), p. 1368), it follows that An = ­̂¡1STD gives an ine±cient estimator of

µ. Valid inferences and e±cient estimation are made possible by the following result, where

Ã̂i ´ Ãi(¹̂) and
D̂ =

1

n

nX
i=1

Ã
@Qi(m)"̂i
@m

¯̄̄̄
m=¹̂

!
:
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Proposition 3 If Assumption 1 holds, then ­̂ ´ n¡1Pn
i=1

³
Q̂i"̂i + D̂Ã̂i

´³
Q̂i"̂i + D̂Ã̂i

´0 p¡!
­.

III. A bibliographic note

Professor Lewbel also shows that high-order moments can be used to estimate regressions

that are quadratic in a mismeasured regressor. It should be noted that this is a special case

of the analysis of polynomial regressions given by Geary (1942, pp. 73-75) in his seminal

paper on estimation using high-order cumulants.

Appendix: Proofs

Lemma 4.3 of Newey and McFadden (1994), henceforth Lemma 4.3NM, will be used repeat-

edly in proving Propositions 1, 2, and 3. Lemma 1 below veri¯es a condition assumed by

Lemma 4.3NM. For notation, let kAk ´ kvec (A)k, where A is a matrix and k ¢ k is the Euclid-
ean norm. Two easily veri¯ed facts used below are kAbk · kAk ¢ kbk and kab0k = kak ¢ kbk,
where a and b are column vectors and k ¢ k can denote norms for di®erently dimensioned
vectors.

Lemma 1 There exist neighborhoods N¹ of ¹ and N of (¹0; µ0) such that

(i) E
h
supm2N¹ kQi(m)R0ik2

i
<1; (ii) E

h
supm2N¹

°°°@Qi(m)"i@m0

°°°i <1;
(iii) E

£
sup(m;t)2N kQi(m) (Yi ¡R0it)k2

¤
<1; (iv) E £sup(m;t)2N kÃi(m)Qi(m)0 (Yi ¡R0it)k¤ <

1.

Proof: To prove (i), ¯rst note that supm2N¹ kQi(m)R0ik2 = supm2N¹ kQi(m)k2 ¢kRik2. In view
of (5), it therefore su±ces to show supm2N¹ kqi(m)k2 is integrable. Since kqi(m)k2 is a sum
of terms of the form

¡
(Gi ¡mG)

°(Zi ¡mZ)
±(Yi ¡mY )

¿
¢2
, where °; ±; and ¿ are nonnegative

integers summing to 1 or 2, it su±ces to show

sup
m2N¹

(Gi ¡mG)
2°(Zi ¡mZ)

2±(Yi ¡mY )
2¿ (15)

is integrable. Let N¹ = BG £BZ £BY , where Bk is an open interval of length 2¸k centered
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at E(ki), k = G;Z; Y . Then (15) equals

sup
mG2BG

(Gi ¡mG)
2° sup
mZ2BZ

(Zi ¡mZ)
2± sup
mY 2BY

(Yi ¡mY )
2¿ , (16)

which is less than or equal to

(jGi ¡E(Gi)j+ ¸G)2°(jZi ¡E(Zi)j+ ¸Z)2±(jYi ¡ E(Yi)j+ ¸Y )2¿ : (17)

Assumption 1 and equations (1)-(2) imply that (17), and therefore (16) is integrable, estab-

lishing (i). The proof of (ii) follows by a similar argument, after noting that

supm2N¹

°°°@Qi(m)"i@m0

°°° = supm2N¹ °°°@Qi(m)@m0

°°°¢j"ij and that °°°@Qi(m)@m0

°°°2 is a sum of terms of the form¡
Á(Gi ¡mG)

°(Zi ¡mZ)
±(Yi ¡mY )

¿
¢2
, where (Á; °; ±; ¿ ) are nonnegative integers. To prove

(iii), let N = N¹ £ Bµ, where Bµ is an open ball of radius ¸µ centered at µ, and note that
sup(m;t)2N kqi(m) (Yi ¡R0it)k2 = supm2N¹ kqi(m)k2 supt2Bµ jYi ¡R0itj2. The right hand side
of the last equality is less than or equal to the product of (17) and (jYi ¡R0iµj+ ¸µ kRik)2, a
product that is integrable by Assumption 1. Part (iv) is proven similarly, after noting that

kÃi(m)qi(m)0 (Yi ¡R0it)k = kÃi(m)k ¢ kqi(m)k ¢ jYi ¡R0itj, supm2N¹ (kÃi(m)k ¢ kqi(m)k) ·
supm2N¹ kÃi(m)k supm2N¹ kqi(m)k, and supm2N¹ kÃi(m)k2 = supmG2BG(Gi ¡mG)

2+

supmZ2BZ(Zi ¡mZ)
2 + supmY 2BY (Yi ¡mY )

2. ¥

Proof of Proposition 1: Expressions (12) and (13) imply

p
n
³
µ̂ ¡ µ

´
=
³
¹M
0
An ¹M

´¡1
¹M
0
An

1p
n

nX
i=1

Qi(¹̂)"i: (18)

Applying a mean value theorem gives

1p
n

nX
i=1

Qi(¹̂)"i =
1p
n

nX
i=1

Qi(¹)"i +

Ã
1

n

nX
i=1

@Qi(¹
¤)"i

@m0

!
p
n(¹̂¡ ¹); (19)

where ¹¤ is a weighted average of ¹ and ¹̂. (Abusing notation in the usual way, ¹¤ di®ers for

each individual equation in the vector equation (19).) Lemma 1(ii) and Lemma 4.3NM imply

n¡1
Pn

i=1 (@Qi(¹
¤)"i=@m0)

p¡! D. The assumption of i.i.d. sampling with ¯nite moments

and the fact that ¹̂ is a vector of sample means implies
p
n(¹̂¡ ¹) converges in distribution

to a normal distribution. These facts together with Slutsky's theorem imply

1p
n

nX
i=1

Qi(¹̂)"i =
1p
n

nX
i=1

Qi(¹)"i +D
p
n(¹̂¡ ¹) + op(1); (20)
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where op(1) denotes a random vector that converges in probability to zero. Substituting the

easily veri¯ed equation
p
n(¹̂¡ ¹) = n¡1=2Pn

i=1 Ãi + op(1) into (20) gives

1p
n

nX
i=1

Qi(¹̂)"i =
1p
n

nX
i=1

Qi(¹)"i +D
1p
n

nX
i=1

Ãi + op(1)

=
1p
n

nX
i=1

(Qi(¹)"i +DÃi) + op(1):

The assumption of ¯nite moments implies Qi(¹)"i + DÃi has a ¯nite second moment, so

(1=
p
n)
Pn

i=1Qi(¹̂)"i
d¡! N(0;­) by the Lindeberg-Levy central limit theorem. Proposition

1 follows from this result together with equation (18), the assumption An
p¡! A, and the

fact that Lemma 1(i) and Lemma 4.3NM imply ¹M
p¡!M . ¥

Proof of Proposition 2: Since ­̂STD =
1
n

Pn
i=1

½
Qi(¹̂)(Yi ¡R0iµ̂)

h
Qi(¹̂)(Yi ¡R0iµ̂)

i0¾
and

°°Qi(m)(Yi ¡R0it) [Qi(m)(Yi ¡R0it)]0°° = kQi(m) (Yi ¡R0it)k2, Lemmas 1(iii) and 4.3NM
imply ­̂STD

p¡! E
©
Qi(¹)(Yi ¡R0iµ) [Qi(¹)(Yi ¡R0iµ)]0

ª ´ var [Qi(¹)"i]. ¥
Proof of Proposition 3: Note that ­ ´ var [Qi"i]+2DE [ÃiQ0i"i]+D avar(¹̂)D0 and that

­̂ ´ ­̂STD + 2D̂
³
1
n

Pn
i=1 Ã̂iQ̂

0
i"̂i
´
+ D̂

³
1
n

Pn
i=1 Ã̂iÃ̂

0
i

´
D̂0. Lemmas 1(iv) and 4.3NM imply

1
n

Pn
i=1 Ã̂iQ̂

0
i"̂i

p¡! E [ÃiQ
0
i"i]. The proposition follows from this result, the limit D̂

p¡! D

established above, the standard result 1
n

Pn
i=1 Ã̂iÃ̂

0
i

p¡! avar(¹̂), and Proposition 2. ¥
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